Assembly of an oxalate decarboxylase produced under sigmaK control into the Bacillus subtilis spore coat.

نویسندگان

  • Teresa Costa
  • Leif Steil
  • Lígia O Martins
  • Uwe Völker
  • Adriano O Henriques
چکیده

Over 30 polypeptides are synthesized at various times during sporulation in Bacillus subtilis, and they are assembled at the surface of the developing spore to form a multilayer protein structure called the coat. The coat consists of three main layers, an amorphous undercoat close to the underlying spore cortex peptidoglycan, a lamellar inner layer, and an electron-dense striated outer layer. The product of the B. subtilis oxdD gene was previously shown to have oxalate decarboxylase activity when it was produced in Escherichia coli and to be a spore constituent. In this study, we found that OxdD specifically associates with the spore coat structure, and in this paper we describe regulation of its synthesis and assembly. We found that transcription of oxdD is induced during sporulation as a monocistronic unit under the control of sigma(K) and is negatively regulated by GerE. We also found that localization of a functional OxdD-green fluorescent protein (GFP) at the surface of the developing spore depends on the SafA morphogenetic protein, which localizes at the interface between the spore cortex and coat layers. OxdD-GFP localizes around the developing spore in a cotE mutant, which does not assemble the spore outer coat layer, but it does not persist in spores produced by the mutant. Together, the data suggest that OxdD-GFP is targeted to the interior layers of the coat. Additionally, we found that expression of a multicopy allele of oxdD resulted in production of spores with increased levels of OxdD that were able to degrade oxalate but were sensitive to lysozyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A spore coat protein, CotS, of Bacillus subtilis is synthesized under the regulation of sigmaK and GerE during development and is located in the inner coat layer of spores.

The spore coat of Bacillus subtilis has a unique morphology and consists of polypeptides of different sizes, whose synthesis and assembly are precisely regulated by a cascade of transcription factors and regulatory proteins. We examined the factors that regulate cotS gene expression and CotS assembly into the coat layer of B. subtilis by Northern blot and Western blot analysis. Transcription of...

متن کامل

CotC-CotU heterodimerization during assembly of the Bacillus subtilis spore coat.

We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of sigmaK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected ...

متن کامل

Bacillus subtilis aconitase is required for efficient late-sporulation gene expression.

Bacillus subtilis aconitase, encoded by the citB gene, is homologous to the bifunctional eukaryotic protein IRP-1 (iron regulatory protein 1). Like IRP-1, B. subtilis aconitase is both an enzyme and an RNA binding protein. In an attempt to separate the two activities of aconitase, the C-terminal region of the B. subtilis citB gene product was mutagenized. The resulting strain had high catalytic...

متن کامل

Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier.

The display of proteins such as feed enzymes at the surface of bacterial spore systems has a great potential use for animal feed. Feed enzymes increase the digestibility of nutrients, leading to greater efficiency in the manufacturing of animal products and minimizing the environmental impact of increased animal production. To deliver their full potential in the gut, feed enzymes must survive t...

متن کامل

Bacillus subtilis spore display of recombinant proteins using a coat-associated enzyme as carrier

Display of proteins like feed enzymes at the surface of bacterial spore systems has a great potential use for animal feed. Feed enzymes increase the digestibility of nutrients, leading to greater efficiency in the manufacturing of animal products and minimizing the environmental 5 impact of increased animal production. To deliver their full potential in the gut, feed enzymes must survive the ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 5  شماره 

صفحات  -

تاریخ انتشار 2004